Combination Therapy Accelerates Diabetic Wound Closure

نویسندگان

  • Robert J. Allen Jr.
  • Marc A. Soares
  • Ilyse D. Haberman
  • Caroline Szpalski
  • Jeffrey Schachar
  • Clarence D. Lin
  • Phuong D. Nguyen
  • Pierre B. Saadeh
  • Stephen M. Warren
چکیده

BACKGROUND Non-healing foot ulcers are the most common cause of non-traumatic amputation and hospitalization amongst diabetics in the developed world. Impaired wound neovascularization perpetuates a cycle of dysfunctional tissue repair and regeneration. Evidence implicates defective mobilization of marrow-derived progenitor cells (PCs) as a fundamental cause of impaired diabetic neovascularization. Currently, there are no FDA-approved therapies to address this defect. Here we report an endogenous PC strategy to improve diabetic wound neovascularization and closure through a combination therapy of AMD3100, which mobilizes marrow-derived PCs by competitively binding to the cell surface CXCR4 receptor, and PDGF-BB, which is a protein known to enhance cell growth, progenitor cell migration and angiogenesis. METHODS AND RESULTS Wounded mice were assigned to 1 of 5 experimental arms (n = 8/arm): saline treated wild-type, saline treated diabetic, AMD3100 treated diabetic, PDGF-BB treated diabetic, and AMD3100/PDGF-BB treated diabetic. Circulating PC number and wound vascularity were analyzed for each group (n = 8/group). Cellular function was assessed in the presence of AMD3100. Using a validated preclinical model of type II diabetic wound healing, we show that AMD3100 therapy (10 mg/kg; i.p. daily) alone can rescue diabetes-specific defects in PC mobilization, but cannot restore normal wound neovascularization. Through further investigation, we demonstrate an acquired trafficking-defect within AMD3100-treated diabetic PCs that can be rescued by PDGF-BB (2 μg; topical) supplementation within the wound environment. Finally, we determine that combination therapy restores diabetic wound neovascularization and accelerates time to wound closure by 40%. CONCLUSIONS Combination AMD3100 and PDGF-BB therapy synergistically improves BM PC mobilization and trafficking, resulting in significantly improved diabetic wound closure and neovascularization. The success of this endogenous, cell-based strategy to improve diabetic wound healing using FDA-approved therapies is inherently translatable.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Manganese superoxide dismutase expression in endothelial progenitor cells accelerates wound healing in diabetic mice.

Amputation as a result of impaired wound healing is a serious complication of diabetes. Inadequate angiogenesis contributes to poor wound healing in diabetic patients. Endothelial progenitor cells (EPCs) normally augment angiogenesis and wound repair but are functionally impaired in diabetics. Here we report that decreased expression of manganese superoxide dismutase (MnSOD) in EPCs contributes...

متن کامل

Local Administration of L-Arginine Accelerates Wound Closure

Objective(s) The process of wound healing involves tightly integrated events including inflammation, granulation tissue formation and remodeling. Systemic administration of L-arginine promotes wound healing but its global side effects are undesirable. To confine the action of L-arginine at the site of injury, we tested the effects of local administration of L-arginine on the healing of excisio...

متن کامل

Quality-Control Culture System Restores Diabetic Endothelial Progenitor Cell Vasculogenesis and Accelerates Wound Closure

Delayed diabetic wound healing is, in part, the result of inadequate endothelial progenitor cell (EPC) proliferation, mobilization, and trafficking. Recently, we developed a serum-free functional culture system called the quality and quantity culture (QQc) system that enhances the number and vasculogenic potential of EPCs. We hypothesize that QQc restoration of diabetic EPC function will improv...

متن کامل

The Effect of Co-administration of Aloe vera Gel and Cinnamon zeynalicum Hydroethanolic Extract on Wound Healing Process in Diabetic Mice

Objective-This study was conducted to evaluate the effect of co-administration of Aloe vera gel and cinnamon zeynalicum bark hydroethanolic extract on process of wound healing in diabetic mice model.Design- Experimental Study.Animals- Seventy-two male BALB/c mice.Procedures- A single full-thickness excisional wound was created on ba...

متن کامل

MicroRNA miR-27b rescues bone marrow-derived angiogenic cell function and accelerates wound healing in type 2 diabetes mellitus.

OBJECTIVE Vascular precursor cells with angiogenic potentials are important for tissue repair, which is impaired in diabetes mellitus. MicroRNAs are recently discovered key regulators of gene expression, but their role in vascular precursor cell-mediated angiogenesis in diabetes mellitus is unknown. We tested the hypothesis that the microRNA miR-27b rescues impaired bone marrow-derived angiogen...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 9  شماره 

صفحات  -

تاریخ انتشار 2014